RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 196, Number 2, Pages 328–340 (Mi tmf9472)

This article is cited in 11 papers

On integrable non–autonomous Liénard–type equations

D. I. Sinelshchikov, N. A. Kudryashov

National Research Nuclear University "MEPhI", Moscow, Russia

Abstract: We study a family of nonautonomous generalized Liénard-type equations. We consider the equivalence problem via the generalized Sundman transformations between this family of equations and type-I Painlevé–Gambier equations. As a result, we find four criteria of equivalence, which give four integrable families of Liénard-type equations. We demonstrate that these criteria can be used to construct general traveling-wave and stationary solutions of certain classes of diffusion–convection equations. We also illustrate our results with several other examples of integrable nonautonomous Liénard-type equations.

Keywords: Liénard-type equation, nonlocal transformation, general solution, Painlevé–Gambier equation.

PACS: 02.30.Hq; 02.30.Ik

MSC: 34A05; 34A34; 34M55

Received: 29.09.2017
Revised: 11.11.2017

DOI: 10.4213/tmf9472


 English version:
Theoretical and Mathematical Physics, 2018, 196:2, 1230–1240

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025