RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 198, Number 1, Pages 32–53 (Mi tmf9512)

This article is cited in 16 papers

The $6j$-symbols for the $SL(2,\mathbb C)$ group

S. È. Derkacheva, V. P. Spiridonovb

a St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
b Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia

Abstract: We study $6j$-symbols or Racah coefficients for the tensor products of infinite-dimensional unitary principal series representations of the group $SL(2,\mathbb C)$. Using the Feynman diagram technique, we reproduce the results of Ismagilov in constructing these symbols (up to a slight difference associated with equivalent representations). The resulting $6j$-symbols are expressed either as a triple integral over complex plane or as an infinite bilateral sum of integrals of the Mellin–Barnes type.

Keywords: $3j$-symbol, $6j$-symbol, Feynman diagram, $SL(2,\mathbb C)$ group, hypergeometric integral.

Received: 20.11.2017
Revised: 20.11.2017

DOI: 10.4213/tmf9512


 English version:
Theoretical and Mathematical Physics, 2019, 198:1, 29–47

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024