RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 199, Number 1, Pages 3–32 (Mi tmf9536)

This article is cited in 1 paper

Singular vectors of the Ding–Iohara–Miki algebra

Y. Ohkubo

Graduate School of Mathematical Sciences, The University of Tokyo, Komaba, Tokyo, Japan

Abstract: We review properties of generalized Macdonald functions arising from the AGT correspondence. In particular, we explain a coincidence between generalized Macdonald functions and singular vectors of a certain algebra $\mathcal{A}(N)$ obtained using the level-$(N,0)$ representation (horizontal representation) of the Ding–Iohara–Miki algebra. Moreover, we give a factored formula for the Kac determinant of $\mathcal{A}(N)$, which proves the conjecture that the Poincaré–Birkhoff–Witt-type vectors of the algebra $\mathcal{A}(N)$ form a basis in its representation space.

Keywords: AGT correspondence, Macdonald symmetric function, Ding–Iohara–Miki algebra, singular vector.

Received: 12.01.2018
Revised: 30.09.2018

DOI: 10.4213/tmf9536


 English version:
Theoretical and Mathematical Physics, 2019, 199:1, 475–500

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025