RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2018 Volume 197, Number 2, Pages 269–278 (Mi tmf9552)

This article is cited in 8 papers

Asymptotics of wave functions of the stationary Schrödinger equation in the Weyl chamber

S. Yu. Dobrokhotovab, D. S. Minenkova, S. B. Shlosmancde

a Ishlinsky Institute for Problems of Mechanics, Moscow, Russia
b Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
c Skolkovo Institute of Science and Technology, Москва, Россия
d Aix Marseille Université, Université de Toulon, CNRS, CPT, Marseille, France
e Kharkevich Institute for Information Transmission Problems, RAS, Moscow, Russia

Abstract: We study stationary solutions of the Schrödinger equation with a monotonic potential $U$ in a polyhedral angle (Weyl chamber) with the Dirichlet boundary condition. The potential has the form $U(\mathbf x)=\sum_{j=1}^nV(x_j)$, ${\mathbf x=(x_1,\dots,x_n)\in\mathbb R^n}$, with a monotonically increasing function $V(y)$. We construct semiclassical asymptotic formulas for eigenvalues and eigenfunctions in the form of the Slater determinant composed of Airy functions with arguments depending nonlinearly on $x_j$. We propose a method for implementing the Maslov canonical operator in the form of the Airy function based on canonical transformations.

Keywords: stationary Schrödinger equation, boundary value problem, Weyl-chamber-type polyhedral angle, spectrum, quantization condition, Maslov canonical operator, Airy function.

PACS: 03

MSC: 34E20, 34B05

Received: 16.02.2018

DOI: 10.4213/tmf9552


 English version:
Theoretical and Mathematical Physics, 2018, 197:2, 1626–1634

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024