RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 198, Number 2, Pages 284–291 (Mi tmf9555)

This article is cited in 1 paper

Traces and supertraces on the symplectic reflection algebras

S. E. Konsteina, I. V. Tyutinab

a Lebedev Physical Institute, RAS, Moscow, Russia
b Tomsk State Pedagogical University, Tomsk, Russia

Abstract: The symplectic reflection algebra $H_{1,\nu}(G)$ has a $T(G)$-dimensional space of traces, and if it is regarded as a superalgebra with a natural parity, then it has an $S(G)$-dimensional space of supertraces. The values of $T(G)$ and $S(G)$ depend on the symplectic reflection group $G$ and are independent of the parameter $\nu$. We present values of $T(G)$ and $S(G)$ for the groups generated by the root systems and for the groups $G=\Gamma\wr S_N$, where $\Gamma$ is a finite subgroup of $Sp(2,\mathbb C)$.

Keywords: symplectic reflection algebra, Cherednik algebra, trace, supertrace.

Received: 20.02.2018
Revised: 20.02.2018

DOI: 10.4213/tmf9555


 English version:
Theoretical and Mathematical Physics, 2019, 198:2, 249–255

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025