Abstract:
Stohastic theory of fully developed turbulence is considered within the framework of the field theoretic renormalization group and short-distance expansion. The problem of verification of the Kolmogorov–Obukhov theory is discussed in connection with correlation functions of composite operators. An explicit expression for the critical dimensionality of a general composite operator is obtained. The Second Kolmogorov hypothesis (indepedence of the correlators on the viscosity) is proved for an arbitrary UV-finite composite operator. It is shown that there exists an infinite number of Galilean invariant scalar operators having negative critical dimensionalities.