RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 198, Number 3, Pages 489–522 (Mi tmf9578)

This article is cited in 3 papers

Quantum mechanical equivalence of the metrics of a centrally symmetric gravitational field

M. V. Gorbatenkoa, V. P. Neznamovab

a Russian Federal Nuclear Center, All-Russian Scientific Research Institute of Experimental Physics, Sarov, Nizhny Novgorod Oblast, Russia
b National Research Nuclear University MEPhI, Moscow, Russia

Abstract: We analyze the quantum mechanical equivalence of the metrics of a centrally symmetric uncharged gravitational field. We consider the static Schwarzschild metric in spherical and isotropic coordinates, stationary Eddington–Finkelstein and Painlevé–Gullstrand metrics, and nonstationary Lemaître–Finkelstein and Kruskal–Szekeres metrics. When the real radial functions of the Dirac equation and of the second-order equation in the Schwarzschild field are used, the domain of wave functions is restricted to the range $r>r_0$, where $r_0$ is the radius of the event horizon. A corresponding constraint also exists in other coordinates for all considered metrics. For the considered metrics, the second-order equations admit the existence of degenerate stationary bound states of fermions with zero energy. As a result, we prove that physically meaningful results for a quantum mechanical description of a particle interaction with a gravitational field are independent of the choice of a solution for the centrally symmetric static gravitational field used.

Keywords: coordinate transformation, Dirac Hamiltonian, second-order equation for fermions, effective potential, degenerate bound state.

PACS: 03.65.-w, 04.20.-q

Received: 09.04.2018
Revised: 31.05.2018

DOI: 10.4213/tmf9578


 English version:
Theoretical and Mathematical Physics, 2019, 198:3, 425–454

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024