RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 200, Number 3, Pages 494–506 (Mi tmf9648)

This article is cited in 5 papers

Local perturbation of the discrete Schrödinger operator and a generalized Chebyshev oscillator

V. V. Borzova, E. V. Damaskinskyb

a St. Petersburg State University of Telecommunications, St. Petersburg, Russia
b Institute of Defence Technical Engineering, St. Petersburg, Russia

Abstract: We discuss the conditions under which a special linear transformation of the classical Chebyshev polynomials $($of the second kind$)$ generate a class of polynomials related to "local perturbations" of the coefficients of a discrete Schrödinger equation. These polynomials are called generalized Chebyshev polynomials. We answer this question for the simplest class of "local perturbations" and describe a generalized Chebyshev oscillator corresponding to generalized Chebyshev polynomials.

Keywords: Jacobi matrix, orthogonal polynomials, classical Chebyshev polynomial, generalized Chebyshev polynomial, generalized Chebyshev oscillator.

Received: 29.10.2018
Revised: 29.04.2019

DOI: 10.4213/tmf9648


 English version:
Theoretical and Mathematical Physics, 2019, 200:3, 1348–1359

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025