Abstract:
We construct a quantum kinetic theory of a weakly interacting critical boson gas using the expectation values of products of Heisenberg field operators in the grand canonical ensemble. Using a functional representation for the Wick theorem for time-ordered products, we construct a perturbation theory for the generating functional of these time-dependent Green's functions at a finite temperature. We note some problems of the functional-integral representation and discuss unusual apparent divergences of the perturbation expansion. We propose a regularization of these divergences using attenuating propagators. Using a linear transformation to variables with well-defined scaling dimensions, we construct an infrared effective field theory. We show that the structure of the regularized model is restored by renormalization. We propose a multiplicatively renormalizable infrared effective model of the quantum dynamics of a boson gas.