RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 201, Number 3, Pages 315–336 (Mi tmf9744)

This article is cited in 4 papers

Spaces of type $S$ and deformation quantization

M. A. Soloviev

Lebedev Physical Institute, RAS, Moscow Russia

Abstract: We study the properties of the Gelfand–Shilov spaces $S^{b_n}_{a_k}$ in the context of deformation quantization. Our main result is a characterization of their corresponding multiplier algebras with respect to a twisted convolution, which is given in terms of the inclusion relation between these algebras and the duals of the spaces of pointwise multipliers with an explicit description of these functional spaces. The proof of the inclusion theorem essentially uses the equality $S^{b_n}_{a_k}=S^{b_n}\cap S_{a_k}$.

Keywords: deformation quantization, Weyl symbol, Moyal product, multiplier algebra, Gelfand–Shilov spacedeformation quantization, Weyl symbol, Moyal product, multiplier algebra, Gelfand–Shilov space.

Received: 15.05.2019
Revised: 15.05.2019

DOI: 10.4213/tmf9744


 English version:
Theoretical and Mathematical Physics, 2019, 201:3, 1682–1700

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024