RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2019 Volume 201, Number 2, Pages 153–174 (Mi tmf9762)

This article is cited in 6 papers

Bethe vectors for orthogonal integrable models

A. N. Liashyka, S. Z. Pakuliakb, E. Ragoucyc, N. A. Slavnovb

a Skolkovo Institute of Science and Technology, Moscow, Russia
b Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
c Laboratoire de Physique Théorique LAPTh, CNRS and USMB, Annecy-le-Vieux, France

Abstract: We consider quantum integrable models associated with the $\mathfrak{so}_3$ algebra and describe Bethe vectors of these models in terms of the current generators of the $\mathcal{D}Y(\mathfrak{so}_3)$ algebra. To implement this program, we use an isomorphism between the $R$-matrix and the Drinfeld current realizations of the Yangians and their doubles for classical type $B$-, $C$-, and $D$-series algebras. Using these results, we derive the actions of the monodromy matrix elements on off-shell Bethe vectors. We obtain recurrence relations for off-shell Bethe vectors and Bethe equations for on-shell Bethe vectors. The formulas for the action of the monodromy matrix elements can also be used to calculate scalar products in the models associated with the $\mathfrak{so}_3$ algebra.

Keywords: Yangian of a simple Lie algebra, Yangian double, algebraic Bethe ansatz.

Received: 07.06.2019
Revised: 07.06.2019

DOI: 10.4213/tmf9762


 English version:
Theoretical and Mathematical Physics, 2019, 201:2, 1545–1564

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025