RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2020 Volume 203, Number 3, Pages 401–416 (Mi tmf9855)

Thermodynamical averages for the Ising model and spectral invariants of Toeplitz matrices

V. M. Kaplitskii

Institute of Mathematics, Mechanics and Computer Sciences, Southern Federal University, Rostov-on-Don, Russia

Abstract: We derive a general formula giving a representation of the partition function of the one-dimensional Ising model of a system of $N$ particles in the form of an explicitly defined functional of the spectral invariants of finite submatrices of a certain infinite Toeplitz matrix. We obtain an asymptotic representation of the partition function for large $N$, which can be a base for explicitly calculating some thermodynamic averages, for example, the specific free energy, in the case of a general translation-invariant spin interaction (not necessarily only between nearest neighbors). We estimate the partition function from above and below in the plane of the complex variable $\beta$ $(\beta$ is the inverse temperature) and consider the conditions under which these estimates are asymptotically equivalent as $N\to\infty$.

Keywords: Ising model, statistical model, specific free energy, asymptotics, Toeplitz matrix.

Received: 29.11.2019
Revised: 06.02.2020

DOI: 10.4213/tmf9855


 English version:
Theoretical and Mathematical Physics, 2020, 203:3, 780–793

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024