RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2020 Volume 205, Number 3, Pages 368–390 (Mi tmf9898)

This article is cited in 9 papers

Infinite number of eigenvalues of $2\times 2$ operator matrices: Asymptotic discrete spectrum

T. H. Rasulovab, E. B. Dilmurodovab

a Bukhara State University, Bukhara, Uzbekistan
b Bukhara Department, Romanovsky Mathematics Institute, Bukhara, Uzbekistan

Abstract: We study an unbounded $2\times2$ operator matrix $\mathcal{A}$ in the direct product of two Hilbert spaces. We obtain asymptotic formulas for the number of eigenvalues of $\mathcal{A}$. We consider a $2\times2$ operator matrix $\mathcal{A}_\mu$, where $\mu>0$ is the coupling constant, associated with the Hamiltonian of a system with at most three particles on the lattice $\mathbb{Z}^3$. We find the critical value $\mu_0$ of the coupling constant $\mu$ for which $\mathcal{A}_{\mu_0}$ has an infinite number of eigenvalues. These eigenvalues accumulate at the lower and upper bounds of the essential spectrum. We obtain an asymptotic formula for the number of such eigenvalues in both the left and right parts of the essential spectrum.

Keywords: operator matrix, coupling constant, dispersion function, Fock space, creation operator, annihilation operator, Birman–Schwinger principle, essential spectrum, discrete spectrum, asymptotics.

Received: 04.03.2020
Revised: 23.04.2020

DOI: 10.4213/tmf9898


 English version:
Theoretical and Mathematical Physics, 2020, 205:3, 1564–1584

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024