RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2020 Volume 204, Number 2, Pages 153–170 (Mi tmf9900)

Group algebras acting on the space of solutions of a special double confluent Heun equation

V. M. Buchstabera, S. I. Tertychnyib

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b All-Russian Scientific Research Institute for Physical and Radio-Technical Measurements (VNIIFTRI), Mendeleevo, Moscow region, Russia

Abstract: We study properties of the space $\boldsymbol{\Omega}$ of solutions of a special double confluent Heun equation closely related to the model of a overdamped Josephson junction. We describe operators acting on $\boldsymbol{\Omega}$ and relations in the algebra $\mathcal{A}$ generated by them over the real number field. The structure of $\mathcal{A}$ depends on parameters. We give conditions under which $\mathcal{A}$ is isomorphic to a group algebra and describe two corresponding group structures.

Keywords: special double confluent Heun equation, monodromy operator, solution space symmetry, group algebra.

Received: 06.03.2020
Revised: 06.03.2020

DOI: 10.4213/tmf9900


 English version:
Theoretical and Mathematical Physics, 2020, 204:2, 967–983

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025