RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2020 Volume 204, Number 3, Pages 332–354 (Mi tmf9904)

This article is cited in 5 papers

Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$

V. S. Gerdjikovabc, A. A. Stefanovad, I. D. Ilieva, G. P. Boyadjieva, A. O. Smirnove, V. B. Matveevfg, M. V. Pavlovh

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
b National Engineering Physics Institute "MEPhI", Moscow, Russia
c Institute for Advanced Physical Studies, New Bulgarian University, Sofia, Bulgaria
d Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
e St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
f St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
g Institut de Mathématiques de Bourgogne (IMB), Université de Bourgogne — France Comté, Dijon, France
h Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia

Abstract: We construct three nonequivalent gradings in the algebra $D_4\simeq so(8)$. The first is the standard grading obtained with the Coxeter automorphism $C_1=S_{\alpha_2}S_{\alpha_1}S_{\alpha_3}S_{\alpha_4}$ using its dihedral realization. In the second, we use $C_2=C_1R$, where $R$ is the mirror automorphism. The third is $C_3=S_{\alpha_2}S_{\alpha_1}T$, where $T$ is the external automorphism of order 3. For each of these gradings, we construct a basis in the corresponding linear subspaces $\mathfrak{g}^{(k)}$, the orbits of the Coxeter automorphisms, and the related Lax pairs generating the corresponding modified Korteweg–de Vries (mKdV) hierarchies. We find compact expressions for each of the hierarchies in terms of recursion operators. Finally, we write the first nontrivial mKdV equations and their Hamiltonians in explicit form. For $D_4^{(1)}$, these are in fact two mKdV systems because the exponent 3 has the multiplicity two in this case. Each of these mKdV systems consists of four equations of third order in $\partial_x$. For $D_4^{(2)}$, we have a system of three equations of third order in $\partial_x$. For $D_4^{(3)}$, we have a system of two equations of fifth order in $\partial_x$.

Keywords: mKdV equation, recursion operator, Kac–Moody algebra, hierarchy of integrable equations.

Received: 10.03.2020
Revised: 10.03.2020

DOI: 10.4213/tmf9904


 English version:
Theoretical and Mathematical Physics, 2020, 204:3, 1110–1129

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025