RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2020 Volume 205, Number 1, Pages 41–54 (Mi tmf9926)

This article is cited in 2 papers

Dispersionless integrable systems and the Bogomolny equations on an Einstein–Weyl geometry background

L. V. Bogdanov

Landau Institute for Theoretical Physics, RAS, Moscow, Russia

Abstract: We obtain a dispersionless integrable system describing a local form of a general three-dimensional Einstein–Weyl geometry with a Euclidean (positive) signature, construct its matrix extension, and show that it leads to the Bogomolny equations for a non-Abelian monopole on an Einstein–Weyl background. We also consider the corresponding dispersionless integrable hierarchy, its matrix extension, and the dressing scheme.

Keywords: dispersionless integrable system, Einstein–Weyl geometry, Bogomolny equations, Yang–Mills–Higgs equations.

PACS: 02.30.Ik 02.40.−k 11.15.−q

MSC: 37K10; 37K15; 37K25; 35Q75

Received: 28.04.2020
Revised: 06.05.2020

DOI: 10.4213/tmf9926


 English version:
Theoretical and Mathematical Physics, 2020, 205:1, 1279–1290

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024