RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 206, Number 1, Pages 23–46 (Mi tmf9968)

This article is cited in 4 papers

Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models

A. N. Liashykab, S. Z. Pakuliakcd

a Skolkovo Institute of Science and Technology, Moscow, Russia
b National Research University "Higher School of Economics", Moscow, Russia
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Oblast, Russia
d Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Oblast, Russia

Abstract: We study the class of $\mathfrak o_{2n+1}$-invariant quantum integrable models in the framework of the algebraic Bethe ansatz and propose a construction of the $\mathfrak o_{2n+1}$-invariant Bethe vector in terms of the Drinfeld currents for the Yangian double $\mathcal DY(\mathfrak o_{2n+1})$. We calculate the action of the monodromy matrix elements on the off-shell Bethe vectors for these models and obtain recurrence relations for these vectors. The action formulas can be used to investigate scalar products of Bethe vectors in $\mathfrak o_{2n+1}$-invariant models.

Keywords: algebraic Bethe ansatz, Yangian double of simple Lie algebra, Bethe vector.

Received: 09.08.2020
Revised: 08.09.2020

DOI: 10.4213/tmf9968


 English version:
Theoretical and Mathematical Physics, 2021, 206:1, 19–39

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024