Abstract:
We introduce the notion of Darboux transformations for the strict KP hierarchy. We previously showed that solutions of this integrable hierarchy can be constructed from a flag variety $\mathcal{F}(1)$. Here, we describe which two points in this flag variety are connected by such a transformation. Moreover, we present a closed form of the operators that realize this transformation and describe their geometric characteristics. We show which of these Darboux transformations map solutions of the strict $n$-KdV hierarchy to other solutions of this reduction of the strict KP hierarchy.