RUS  ENG
Full version
JOURNALS // Teoreticheskaya i Matematicheskaya Fizika // Archive

TMF, 2021 Volume 206, Number 3, Pages 279–294 (Mi tmf9994)

This article is cited in 4 papers

A Gelfand–Tsetlin-type basis for the algebra $\mathfrak{sp}_4$ and hypergeometric functions

D. V. Artamonov

Lomonosov Moscow State University, Moscow, Russia

Abstract: We consider a realization of a representation of the $\mathfrak{sp}_4$ Lie algebra in the space of functions on a Lie group $Sp_4$. We find a function corresponding to a Gelfand–Tsetlin-type basis vector for $\mathfrak{sp}_4$ constructed by Zhelobenko. This function is expressed in terms of an $A$-hypergeometric function. Developing a new technique for working with such functions, we analytically find formulas for the action of the algebra generators in this basis (previously unknown formulas). These formulas turn out to be more complicated than the formulas for the action of generators in the Gelfand–Tsetlin-type basis constructed by Molev.

Keywords: $A$-hypergeometric function, Gelfand–Tsetlin basis.

MSC: 33C80

Received: 08.10.2020
Revised: 05.11.2020

DOI: 10.4213/tmf9994


 English version:
Theoretical and Mathematical Physics, 2021, 206:3, 243–257

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024