Abstract:
A frequent problem of traffic flow characteristics acquisition is data loss, which leads to uneven time series analysis. An effective approach to uneven data analysis is the spectral analysis, which requires obtaining process with a constant sampling interval, for example, by restoring missing data, which leads to the appearance of dating error. Thus, the main purpose of this study is to develop a method and software for wavelet analysis of traffic flow characteristics without restoring the missing data.
To analyze and interpret non-stationary uneven time series obtained from traffic monitoring systems, we propose the wavelet transformation method with adjustment of the sampling intervals, which results in a time-frequency domain with a constant sampling interval. Wavelet analysis is applied to the macroscopic traffic flow characteristics.
We developed the software for traffic flow wavelet analysis on the "ITSGIS" intelligent transport geo-information framework using the attribute-oriented approach.
Wavelet analysis of traffic flows characteristics using Morlet wavelets was accomplished for data analysis of the city of Aarhus, Denmark. Wavelet spectra and scalograms were constructed and analyzed, general dependencies in the frequency distribution of extremes, and differences in spectral power were revealed.
The developed software is being experimentally tested in solving practical problems of municipalities and road agencies in Russia.
Keywords:traffic flow, wavelet, intelligent transport system, spectral analysis, frequency analysis, ITS.