RUS  ENG
Full version
JOURNALS // Informatics and Automation // Archive

Informatics and Automation, 2021 Issue 20, volume 2, Pages 407–434 (Mi trspy1148)

This article is cited in 7 papers

Artificial Intelligence, Knowledge and Data Engineering

Shade recognition of the color label based on the fuzzy clustering

M. Bobyr, A. Arkhipov, A. Yakushev

Southwest State University (SWSU)

Abstract: In this article the task of determining the current position of pneumatic actuators is considered. The solution to the given task is achieved by using a technical vision system that allows to apply the fuzzy clustering method to determine in real time the center coordinates and the displacement position of a color label located on the mechatronic complex actuators. The objective of this work is to improve the accuracy of the moving actuator’s of mechatronic complex by improving the accuracy of the color label recognition.
The intellectualization of process of the color shade recognition is based on fuzzy clustering. First, a fuzzy model is built, that allows depending on the input parameters of the color intensity for each of the RGB channels and the color tone component, to select a certain color in the image. After that, the color image is binarized and noise is suppressed.
The authors used two defuzzification models during simulation a fuzzy system: one is based on the center of gravity method (CoG) and the other is based on the method of area ratio (MAR). The model is implemented based on the method of area ratio and allows to remove the dead zones that are present in the center of gravity model. The method of area ratio determines the location of the color label in the image frame. Subsequently, when the actuator is moved longitudinally, the vision system determines the location of the color label in the new frame. The color label position offset between the source and target images allows to determine the moved distance of the color label.
In order to study  how noise affects recognition accuracy, the following digital filters were used: median, Gaussian, matrix and binomial. Analysis of the accuracy of these filters showed that the best result was obtained when using a Gaussian filter. The estimation was based on the signal-to-noise coefficient. The mathematical models of fuzzy clustering of color label recognition were simulated in the Matlab/Simulink environment. Experimental studies of technical vision system performance with the proposed fuzzy clustering model were carried out on a pneumatic mechatronic complex that performs processing, moving and storing of details. During the experiments, a color label was placed on the cylinder, after which the cylinder moved along the guides in the longitudinal direction. During the movement, video recording and image recognition were performed. To determine the accuracy of color label recognition, the PSNR and RMSE coefficients were calculated which were equal 38.21 and 3.14, respectively. The accuracy of determining the displacement based on the developed model for recognizing color labels was equal 99.7%. The defuzzifier speed has increased to 590 ns.

Keywords: fuzzy clustering, color shade recognition, fuzzy logic, RMSE, PSNR, MAPE.

UDC: 004.932

Received: 17.01.2021

DOI: 10.15622/ia.2021.20.2.6



Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024