RUS  ENG
Full version
JOURNALS // Trudy Seminara imeni I. G. Petrovskogo // Archive

Tr. Semim. im. I. G. Petrovskogo, 2019 Issue 32, Pages 8–56 (Mi tsp100)

This article is cited in 9 papers

Harnack's inequality for the $p(x)$-Laplacian with a two-phase exponent $p(x)$

Yu. A. Alkhutov, M. D. Surnachev


Abstract: One considers solutions of the $p(x)$-Laplacian equation in a neighborhood of a point $x_0$ on a hyperplane $\Sigma$. It is assumed that the exponent $p(x)$ possesses a logarithmic continuity modulus as $x_0$ is approached from one of the half-spaces separated by $\Sigma$. A version of the Harnack inequality is proved for these solutions.

UDC: 517.956.25


 English version:
Journal of Mathematical Sciences (New York), 2020, 244:2, 116–147

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024