RUS  ENG
Full version
JOURNALS // Trudy Seminara imeni I. G. Petrovskogo // Archive

Tr. Semim. im. I. G. Petrovskogo, 2019 Issue 32, Pages 220–238 (Mi tsp108)

This article is cited in 1 paper

On the stabilization of solutions of nonlinear parabolic equations with lower-order derivatives

A. A. Kon'kov


Abstract: For parabolic equations of the form
$$ \frac{\partial u}{\partial t}- \sum_{i,j=1}^n a_{ij} (x, u) \frac{\partial^2 u}{\partial x_i \partial x_j} + f (x, u, D u) = 0 \ \ \text{in}\ \ {\mathbb R}_+^{n+1}, $$
where ${\mathbb R}_+^{n+1} = {\mathbb R}^n \times (0, \infty)$, $n \ge 1$, $D = (\partial / \partial x_1, \ldots, \partial / \partial x_n)$, and $f$ satisfies some constraints, we obtain conditions that ensure the convergence of any its solution to zero as $t \to \infty$.

UDC: 517.95


 English version:
Journal of Mathematical Sciences (New York), 2020, 244:2, 254–266

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025