RUS  ENG
Full version
JOURNALS // Taurida Journal of Computer Science Theory and Mathematics // Archive

Taurida Journal of Computer Science Theory and Mathematics, 2019 Issue 3, Pages 7–22 (Mi tvim68)

The approximation of indefinite Schur's functions

E. N. Andreishcheva

Black Sea Higher Naval School

Abstract: In the paper by M. G. Krein and H. Langer [18] researched the questions about aproximations of Nevanlinna functions. Our purpose is to get such result for Schur functions. A function $s(\lambda)$ is called a generalized Schur function if it is meromorphic in the open unit disk and the kernel $\displaystyle{K_{s}(\lambda,\mu)=\frac{1-s(\lambda)\overline{s(\mu)}}{1-\lambda\overline{\mu}}}$ has finite number of negative squares. A set of all such functions forms the generalized Schur class.
As it is known, Schur function admits a unitary realization $ s(\lambda)=s(0)+\lambda [(I-\lambda T)^{-1}u,v]$ or, in other words, it is a characteristic function for some unitary colligation $V$:
$$ V=\begin{bmatrix} T&u\\ \\ [\cdot,v]&s(0) \end{bmatrix}:\begin{pmatrix} \Pi_{\varkappa}\\ \\ \mathbb{C} \end{pmatrix}\rightarrow \begin{pmatrix} \Pi_{\varkappa}\\ \\ \mathbb{C} \end{pmatrix},$$

Here $\Pi_{\varkappa}$ is a Pontryagin space with indefinite inner product $[\cdot,\cdot]$, $T$ is a contractive operator in $\Pi_{\varkappa},$ and $u, v\in\Pi_{\varkappa}.$ Note that the unitary colligation must be chosen minimal what means that $\Pi_{\varkappa}=\overline{span} \{T^{n}u,(T^{c})^{m}v:n,m=0,1,2,\ldots\},$ where $T^{c}$ is $\pi_{\varkappa}$-adjoint with $T$. Let $T$ be a contractive operator in $\Pi_{\varkappa}.$ Then the element $u\in\Pi_{\varkappa}$ is called generating for operator $T$ if
$$ \Pi_{\varkappa}=\overline{span} \displaystyle{\{(I-\lambda T)^{-1}u,~~\lambda\in \mathbb{D},~~\frac{1}{\lambda}\notin\sigma_{p}(T)\}}.$$

By $W_{\theta}$ we denote a set of all $\beta\in \mathbb{C_{-}}$ such that $\displaystyle{|\arg\beta+\frac{\pi}{2}|\leqslant\theta},$ where $\displaystyle{0\leqslant\theta<\frac{\pi}{2}}.$
By $\Lambda_{\theta}$ denote a set of all $\lambda\in\mathbb{D}$, where $\mathbb{D}=\{\xi:|\xi|<1\}$ such that
$$\lambda=(\alpha-i)(\alpha+i)^{-1},~~~-\alpha\in W_{\theta}.$$
The main result of this research is researched the question of the representation generalized Schur function in the neighborhood of the unit.
Let $s(\lambda)=\lambda^{k}s_{k}(\lambda),~s_{k}(0)\neq 0$, $k\leqslant n.$ Then we have assertions if and only if there exist a Pontryagin space $\Pi_{\varkappa}$ , a contractive operator $T$ in $\Pi_{\varkappa}$, and a generative element $u\in dom(I-T)^{-(n+1)}$ for operator $T$ such that:
$$ s(\lambda)=\lambda^{k}- \frac{1}{\overline{s_{k}(0)}}\lambda^{k}(\lambda-1)[(I-\lambda T)^{-1}(I-T)^{-1}T^{k+1}u,T^{k}u],~\\ \lambda\in \mathbb{D},~ \frac{1}{\lambda}\notin\sigma_{p}(T)$$

In this case we can express $c_{\nu}$ in such form:
$$ c_{\nu}= \left\{
\begin{array}{l}\displaystyle{ \frac{1}{\overline{s_{k}(0)}}} \sum\limits_{i=1}^{\nu}C_{k-i}^{\nu-i}[(I-T)^{-(i +1)}T^{k+1}u,T^{k}u]-C_{k}^{\nu},~ 1\leqslant\nu< k+1; \\ \displaystyle{\frac{1}{\overline{s_{k}(0)}}[(I-T)^{-(\nu+1)}T^{\nu}u,T^{k}u]},~~ k+1\leqslant\nu\leqslant n;\\ \displaystyle{\frac{1}{\overline{s_{k}(0)}}[(I-T)^{-(n+1)}T^{n}u,(I-T^{c})^{-(\nu-n)}T^{c(\nu-n)}T^{k}u]},\\ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~n+1\leqslant\nu\leqslant 2n. \end{array}
\right. $$


Keywords: Schur function, approximation, contraction, kernel, Pontryagin space, Cayley-Neumann transformation, indefinite metric, unitary realization, operator.

UDC: 517.58

MSC: 47A58



© Steklov Math. Inst. of RAS, 2024