RUS  ENG
Full version
JOURNALS // Taurida Journal of Computer Science Theory and Mathematics // Archive

Taurida Journal of Computer Science Theory and Mathematics, 2019 Issue 4, Pages 92–106 (Mi tvim80)

On common approach to the construction of $\textsf{J}$-selfadjoint dilation for a linear operator with a nonempty set of regular points

D. V. Tretyakov

Crimea Federal University, Simferopol

Abstract: The common approach to construction of $\textsf{J}$-selfadjoint dilation for linear operator with nonempty regular point set is considered in this article.
Let $A$ — linear operator with nonempty regular point set $(-i\in \rho(A))$ and Closdom$(A)=\mathfrak{H}$, where $\mathfrak{H}$ — Hilbert space,
$$ B_{+}:=iR_{-i}-iR_{-i}^{*}-2R_{-i}^{*}R_{-i}, \ \ B_{-}:=iR_{-i}-iR_{-i}^{*}-2R_{-i}R_{-i}^{*}, $$
$Q_{\pm}:=\sqrt{|B_{\pm}|}$, $B_{\pm}=\mathcal{J}_{\pm}Q_{\pm}$ — polar decompositions of $B_{\pm}$, $\mathfrak{Q}_{\pm}=$Clos$(Q_{\pm}\mathfrak{H})$.
Let $\mathfrak{D}_{\pm}$ — arbitrary Hilbert spaces and $F_{\pm}:$dom$(F_{\pm})\longrightarrow \mathfrak{D}_{\pm} ($dom$(F_{\pm})\subset\mathfrak{D}_{\pm})$ — simple maximal symmetric operators with defect numbers $(\mathfrak{q}_{-},0)$ and $(0,\mathfrak{q}_{+})$ respectively, moreover $\dim\mathfrak{Q}_{\pm}=\dim\mathfrak{N_{\pm}}=\mathfrak{q}_{\pm}$, $\Phi_{\pm}:\mathfrak{N}_{\pm}\rightarrow\mathfrak{Q}_{\pm}$ are isometries, $V_{\pm}$ — Caley transformations of $F_{\pm}$.
Let $\langle \mathcal{H}_{\pm},\Gamma_{\pm}\rangle$ are the spaces of boundary values of operators $F_{\pm}^{*}$, i.e.:
1) $\forall f,g\in $dom$(F_{\pm}^{*}) \ \ (F_{\pm}^{*}f,g)_{\mathfrak{D}_{\pm}}-(f,F_{\pm}^{*}g)_{\mathfrak{D}_{\pm}}=\mp i(\Gamma_{\pm}f,\Gamma_{\pm}g)_{\mathcal{H}_{\pm}}; $
2) the transformations dom$(F_{\pm}^{*})\ni f\mapsto \Gamma_{\pm}f\in \mathcal{H}_{\pm}$ are surjective.
Consider the Hilbert space $\mathbb{H}=\mathfrak{D}_{-}\oplus\mathfrak{H}\oplus\mathfrak{D}_{+}$. Define in this space indefinite metric $\textsf{J}=J_{-}\oplus I\oplus J_{+}$ and operator $\textsf{S}$:
$$ \forall \ h_{\pm}=\sum\limits_{k=0}^{\infty}V_{\pm}^{k}n^{\pm}_{k}\in \mathfrak{D}_{\pm}, \ \ n^{\pm}_{k}\in\mathfrak{N}_{\pm}, \ \ J_{\pm}\left(\sum\limits_{k=0}^{\infty}V_{\pm}^{k}n^{\pm}_{k}\right):= \sum\limits_{k=0}^{\infty}V_{\pm}^{k}\Phi_{\pm}^{-1}\mathcal{J}_{\pm}\Phi_{\pm}n^{\pm}_{k}. $$
The vector $\textsf{h}=(h_{-},h_{0},h_{+})^{T} \in$dom$(\textsf{S})$ iff
If this conditions are fulfil, that for all $\textsf{h}=(h_{-},h_{0},h_{+})^{T}\in $dom$(\textsf{S})$
$$ \textsf{S}\textsf{h}=\textsf{S}(h_{-},h_{0},h_{+})^{T}:=(F_{-}^{*}h_{-},~~-ih_{0}+(A+i)\varphi,~~F_{+}^{*}h_{+})^{T}. $$

Theorem. Operator $\textsf{S}$ is a $\textsf{J}$-sejfadjoint dilation of operator $A$.
Different private cases of dilation $\textsf{S}$ are considered too.

Keywords: $\textsf{J}$-selfadjoint dilation, maximal closed symmetric operator, defect operators.

UDC: 517.432

MSC: 46C20; 47B50



© Steklov Math. Inst. of RAS, 2024