RUS  ENG
Full version
JOURNALS // Taurida Journal of Computer Science Theory and Mathematics // Archive

Taurida Journal of Computer Science Theory and Mathematics, 2020 Issue 4, Pages 7–17 (Mi tvim99)

Ergodic theorems for flows in the ideals of compact operators

A. N. Azizov, V. I. Chilin

National University of Uzbekistan, 100174, Tashkent, Uzbekistan

Abstract: Let $\mathcal H$ be an infinite-dimensional complex Hilbert space, let $(\mathcal B(\mathcal H), \|\cdot\|_\infty)$ be the $C^\star$-algebra of all bounded linear operators acting in $\mathcal H$, and let $\mathcal C_E $ be the symmetric ideal of compact operators in $\mathcal H$ generated by the fully symmetric sequence space $ E \subset c_0$. If $T_t: \mathcal B(\mathcal H) \to \mathcal B(\mathcal H), \ t \geq 0$, is a semigroup of positive Dunford-Schwartz operators, which is strongly continuous on $C_{1} $, then the following versions of individual and mean ergodic theorems are true: For each $x \in \mathcal C_E$ the net $A_t(x) = \frac1t \int_0^tT_s(x) ds$ converges to some $\widehat{x} \in \mathcal C_E $ with respect to the norm $\|\cdot\|_\infty $, as $t \to \infty $; moreover, if $E$ is separable and $E \neq l_1$ (as a set), then $\lim\limits_{t \to \infty}\|A_t (x)-\widehat{x}\|_{\mathcal C_E} = 0$.

Keywords: symmetric sequence space, Banach ideal of compact operators, Dunford-Schwartz operator, individual ergodic theorem, mean ergodic theorem.

UDC: 517.98

MSC: 46E30, 37A30, 47A35

Language: English



© Steklov Math. Inst. of RAS, 2024