RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2005 Volume 50, Issue 3, Pages 597–604 (Mi tvp100)

This article is cited in 3 papers

Short Communications

The structure of the UMVUEs from categorical data

A. Kagana, M. Konikov

a University of Maryland

Abstract: Let an observation $X$ take finitely many values with probabilities $p_1(\theta),\ldots,p_N(\theta)$ depending on an abstract parameter $\theta\in\Theta$. It is proved that a statistic is a uniformly minimum variance unbiased estimator (UMVUE) if and only if it is measurable with respect to a subalgebra of the finite algebra generated by $X$. In general, this subalgebra is smaller than the minimal sufficient subalgebra for $\theta$ and is explicitly described. It is related to a special partition of a finite set of elements of an abstract linear space.

Keywords: estimation, linear space, partition, subalgebra, sufficiency.

Received: 16.03.2005

Language: English

DOI: 10.4213/tvp100


 English version:
Theory of Probability and its Applications, 2006, 50:3, 466–473

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024