RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1980 Volume 25, Issue 1, Pages 162–167 (Mi tvp1042)

This article is cited in 4 papers

Short Communications

Characterization of certain classes of Banach spaces by properties of Gaussian measures

W. Lindea, V. I. Tarieladzeb, S. A. Čobanyanb

a DDR
b Tbilisi

Abstract: The following assertions are proved. 1) The classes of $\gamma$-summing and $\gamma$-radonifying operators with values in a Banach space $X$ coincide iff $X$ does not contain isomorphic copies of $c_0$. 2) An operator $T$ from a Hilbert space into a Banach space of type 2 is $\gamma$-summing iff $T^*$ is absolutely 2-summing. 3) The covariance operator of a strong second order tight measure on a Banach space is nuclear. 4) If $X$ is a Banach space, then every positive symmetric and nuclear linear operator from $X^*$ into $X$ is Gaussian covariance iff $X$ is of type 2.

Received: 06.03.1978


 English version:
Theory of Probability and its Applications, 1980, 25:1, 159–164

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024