RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1980 Volume 25, Issue 3, Pages 561–576 (Mi tvp1095)

This article is cited in 16 papers

On the second order asymptotically minimax estimates

B. Ya. Levit

Moscow

Abstract: Let $X_1,\dots,X_n$ be a sequence of independent random variables having Gaussian distribution $\mathscr N(m,\sigma^2)$ with $\sigma^2$ known and unknown mean $m$ subjected to the restriction $|m|<a$. For an arbitrary estimate $T$ ($X_1,\dots,X_n$) and nonnegative even nondecreasing on $R^+$ loss function $l(x)$ satisfying the condition
$$ \int e^{-x^2/2}x^2l(x)\,dx<\infty $$
we consider the corresponding risk
$$ R(T,l,m)=\mathbf E_ml\biggl(\frac{\sqrt{n}}{\sigma}(T-m)\biggr). $$
It is shown that for $\varepsilon=\sigma/a\sqrt{n}\to 0$ the following asymptotic expansion for the minimax risk holds:
$$ \inf_T\sup_{|m|<a}R(T,l,m)=R_0-1/2R_1\pi^2\varepsilon^2+o(\varepsilon^2), $$
where
$$ R_0=\frac{1}{\sqrt{2\pi}}\int e^{-x^2/2}l(x)\,dx,\qquad R_1=\frac{1}{\sqrt{2\pi}}\int e^{-x^2/2}(x^2-1)l(x)\,dx. $$
Different estimates are exhibited which are second order asymptotically minimax simultaneously for a large class of loss functions.

Received: 26.06.1978


 English version:
Theory of Probability and its Applications, 1981, 25:3, 552–568

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025