RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1969 Volume 14, Issue 4, Pages 693–707 (Mi tvp1481)

This article is cited in 2 papers

On limiting distributions for moduli of sequential differences of independent variables

S. S. Vallander, I. A. Ibragimov, N. G. Lindtrop

Leningrad

Abstract: Let $(\xi,\eta)$ be a pair of independent equally distributed random variables, and $F(x)$ be their common distribution function. We define a sequence of pairs $(\xi_n,\eta_n)$ of independent equally distributed random variables with distribution functions $F_n(x)$:
$$ F_1(x)=\mathbf\{|\xi-\eta|<x\},\quad F_{n+1}(x)=\mathbf P\{|\xi_n-\eta_n|<x\}, $$
and prove two theorems concerning the limiting behaviour of $F_n(x)$.

Received: 01.07.1968


 English version:
Theory of Probability and its Applications, 1969, 14:4, 668–681

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025