RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1998 Volume 43, Issue 3, Pages 417–438 (Mi tvp1550)

This article is cited in 23 papers

Estimation problems for coefficients of stochastic partial differential equations. Part I

I. A. Ibragimova, R. Z. Khas'minskiib

a St. Petersburg Department of V. A. Steklov Institute of Mathematics, Russian Academy of Sciences
b Wayne State University, Detroit, USA

Abstract: This paper considers the problem of estimating functional parameters $a_k(t,x)$, $f(t,x)$ by observing a solution $u_{\varepsilon}(t,x)$ of a stochastic partial differential equation
$$ du_{\varepsilon}(t)=\sum_{|k|\le2p}a_kD_x^ku_{\varepsilon}+f\,dt+\varepsilon\,dw(t), $$
where $w(t)$ is a Wiener process. The asymptotic statement of the problem is considered when the noise level $\varepsilon\to0$. In the first part of the work we determine what is considered the statistics of the problem and investigate the problem of estimating $f$.

Keywords: keywords inverse problems, stochastic partial differential equations, statistical estimating, nonparametric estimating problems.

Received: 09.12.1997

DOI: 10.4213/tvp1550


 English version:
Theory of Probability and its Applications, 1999, 43:3, 370–387

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025