RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1970 Volume 15, Issue 1, Pages 139–142 (Mi tvp1614)

This article is cited in 100 papers

Short Communications

Remarks on non-parametric estimates of density functions and regression curves

È. A. Nadaraya

Tbilisi Ivane Javakhishvili State University

Abstract: In the present paper, sufficient conditions for $\sup\limits_{-\infty<a\le x\le b<\infty}|\widetilde y_n(x)-y(x)|\to0$ and $\sup\limits_{(x,y)\in\mathbf R_2}|f_n(x,y)-f(x,y)|\to0$ as $n\to\infty$ with probability 1 are found, where $\widetilde y_n(x)$ and $f_n(x,y)$ are given by (1) and (12) respectively, $y(x)$ is the regression curve of $Y$ on $X$, and $f(x,y)$ is their two-dimensional density function.

Received: 24.04.1968


 English version:
Theory of Probability and its Applications, 1970, 15:1, 134–137

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025