RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2008 Volume 53, Issue 2, Pages 213–239 (Mi tvp1725)

This article is cited in 16 papers

Positive Densities of Transition Probabilities of Diffusion Processes

V. I. Bogacheva, M. Röcknerb, S. V. Shaposhnikovc

a M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
b Bielefeld University
c M. V. Lomonosov Moscow State University

Abstract: For diffusion processes in $\mathbf R^d$ with locally unbounded drift coefficients we obtain a sufficient condition for the strict positivity of transition probabilities. To this end, we consider parabolic equations of the form $\mathcal L^*\mu=0$ with respect to measures on $\mathbf R^d\times (0,1)$ with the operator $\mathcal L u:=\partial_t u+\partial_{x_i}(a^{ij}\partial_{x_j}u)+b^i\partial_{x_i}u$. It is shown that if the diffusion coefficient $A=(a^{ij})$ is sufficiently regular and the drift coefficient $b=(b^i)$ satisfies the condition $\exp(\kappa |b|^2)\in L_{\mathrm{loc}}^1(\mu)$, where the measure $\mu$ is nonnegative, then $\mu$ has a continuous density $\varrho(x,t)$ which is strictly positive for $t>\tau$ provided that it is not identically zero for $t\le\tau$. Applications are obtained to finite-dimensional projections of stationary distributions and transition probabilities of infinite-dimensional diffusions.

Keywords: density of transition probability, stationary distribution, parabolic equation, infinite-dimensional diffusion.

Received: 26.11.2007

DOI: 10.4213/tvp1725


 English version:
Theory of Probability and its Applications, 2009, 53:2, 194–215

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024