RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1970 Volume 15, Issue 2, Pages 291–303 (Mi tvp1791)

This article is cited in 9 papers

A multiwave transmission line with random non-homogeneities and a Brownian movement in Siegel's circle

M. H. Zakhar-Itkin

Moscow

Abstract: A multiwave transmission line without loses is considered. After a similarity transformation of the matrix coefficient of reflection, it becomes a point of the classical matrix, domain of the first kind, in other words, Siegel's circle.
A transmission along the transmission line leads to a linear fractional transformation of Siegel's circle onto itself. A diffusion equation for a random walk corresponding to these transformations in Siegel's circle is obtained. The invariance of the diffusuion equation enables to study the statistics of the random distance from zero matrix to a walkingspoint of Siegel's circle.

Received: 27.03.1969


 English version:
Theory of Probability and its Applications, 1970, 15:2, 282–294

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024