RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1997 Volume 42, Issue 2, Pages 225–238 (Mi tvp1800)

This article is cited in 2 papers

On the Kolmogorov–Hajek–Rényi inequality for normed integrals of weakly dependent processes

B. V. Bondarev

Донецкий госуниверситет, кафедра алгебры и теории вероятностей, Украина

Abstract: We consider a process of the form $\zeta_\varepsilon(t)=\sqrt{\varepsilon}\int_0^{t/\varepsilon}\eta(s)\,ds$, $t\in [0,1]$, where $\eta(t)$, $t\ge0$, is a strictly stationary process with zero mean satisfying either the uniform strong mixing condition or the absolute regularity condition and find an estimate from below for the probability of the event that $|\zeta_{\varepsilon}(t)|$, $t\in [0,1]$, lies within a domain with growing curved boundaries.

Keywords: uniformly strong mixing, absolute regularity, spiral, martingale, representation.

Received: 04.04.1995

DOI: 10.4213/tvp1800


 English version:
Theory of Probability and its Applications, 1998, 42:2, 213–224

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025