RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1997 Volume 42, Issue 2, Pages 336–341 (Mi tvp1806)

This article is cited in 1 paper

Short Communications

A probabilistic approach tî a nonlinear differential equation on a Riemannian manifold

E. B. Dynkin

Cornell University, Department of Mathematics, USA

Abstract: We investigate the minimal solution of the problem
\begin{gather*} Lu=u^\alpha â D, u=f íà O, \end{gather*}
where $1\le\alpha\le2$, $D$ is an open subset f a Riemannian manifold, O is a regular relatively, open subset of $\partial D$, and $f$ is a mapping from $\partial D$ to $[0,\infty]$ which is continuous on $O$ and vanishes on $\partial D\setminus O$. An explicit formula for such a solution is given in terms of the $(L,\alpha)$-superdiffusion.

Keywords: nonlinear differential equations, Riemannian manifolds, $L$-diffusion, Markov process, minimal positive solution.

Received: 25.12.1996

Language: English

DOI: 10.4213/tvp1806


 English version:
Theory of Probability and its Applications, 1998, 42:2, 289–294

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025