RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2004 Volume 49, Issue 4, Pages 743–774 (Mi tvp192)

This article is cited in 5 papers

On sharp large deviations for sums of random vectors and multidimensional Laplace approximation

Ph. Barbe, M. Broniatowski

CNRS — Laboratoire de Mathématiques Jean Leray, Département de Mathématiques, Universite de Nantes

Abstract: Let $X, X_i,i\geq 1$, be a sequence of independent and identically distributed random vectors in $R^d$. Consider the partial sum $S_n:=X_1+\cdots +X_n$. Under some regularity conditions on the distribution of $X$, we obtain an asymptotic formula for $P\{S_n\in nA\}$, where $A$ is an arbitrary Borel set. Several corollaries follow, one of which asserts that, under the same regularity conditions, for any Borel set $A$, $\lim_{n\to\infty}n^{-1}\log P\{S_n\in nA\} =-I(A)$, where $I$ is a large deviation functional. We also prove a multidimensional Laplace-type approximation that allows an explicit calculation of the sharp large deviation probability typically when the set $A$ has a smooth boundary.

Keywords: large deviations, exponential family, differential geometry of surfaces, asymptotic analysis, Laplace method, Fourier transform.

Received: 30.01.2002

Language: English

DOI: 10.4213/tvp192


 English version:
Theory of Probability and its Applications, 2005, 49:4, 561–588

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024