This article is cited in
75 papers
On the nonparametric estimation of a value of a linear functional in the Gaussian white noise
I. A. Ibragimova,
R. Z. Has'minskiĭb a Leningrad
b Moscow
Abstract:
Suppose we observe a random process
$X_ \varepsilon(t)$,
$0\le t\le 1$ satisfying the equation
\begin{equation}
dX_\varepsilon(t)=s(t)\,dt +\varepsilon\,dw(t)
\end{equation}
where
$w$ is the standard Wiener process and the unknown function
$s$ is assumed to belong to some symmetric closed convex subset
$\Sigma$ of the space
$L_2(0,1)$. Let
$L$ be a linear functional defined on
$\Sigma$. We consider the problem of estimation of the value
$L(s)$ of
$L$ at a point
$s$ when
$X_\varepsilon(t)$,
$0\le t\le 1$ is observed.
Denote by
$\mathscr M$ the set of all linear estimates of
$L(s)$ i. e. estimates of the form
$\displaystyle\int_0^1m(t)\,dX_\varepsilon(t)$. We proved that
1) $\displaystyle\inf_{\widehat L\in\mathscr M}\sup_{s\in\Sigma}\mathbf E_s(L(s)-\widehat L)^2
=\sup_{s\in\Sigma}\varepsilon^2\frac{L^2(s)} {\varepsilon^2+\|s\|^2}$.
2) If $\displaystyle\sup_{s\in\Sigma}\varepsilon^2\frac{L^2(s)}{\varepsilon^2+\|s\|^2}
=\varepsilon^2\frac{L^2(s_\varepsilon)}{\varepsilon^2+\|s_\varepsilon\|^2}$
then $\displaystyle\int_0^1 m_\varepsilon(t)\,dX_\varepsilon(t)$, with
$\displaystyle m_\varepsilon= s_ \varepsilon\frac{L(s_\varepsilon)}{\varepsilon^2+\|s_\varepsilon\|^2}$ is a minimax linear estimator.
Several examples are considered.
Received: 27.07.1982