RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 2004 Volume 49, Issue 4, Pages 791–794 (Mi tvp196)

This article is cited in 2 papers

Short Communications

Maxima of independent sums in the presence of heavy tails

A. V. Lebedev

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics

Abstract: Let
$$Y_{mn}=\max_{1\le i\le m}\sum_{j=1}^n X_{ij},\qquad m,n\ge 1,$$
be a family of extremes, where $X_{ij}$, $i,j\ge 1$, are independent with common subexponential distribution $F$. The limit behavior of $Y_{mn}$ is investigated as $m,n\to\infty$. Various nondegenerate limit laws are obtained (Fréchet and Gumbel), depending on the relative rate of growth of $m,n$ and the tail behavior of $F$.

Keywords: maxima, sums, regularly varying tails, subexponentiality, nondegenerate limit laws, linear scalingū.

Received: 17.03.2003

DOI: 10.4213/tvp196


 English version:
Theory of Probability and its Applications, 2005, 49:4, 700–703

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024