RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1998 Volume 43, Issue 4, Pages 655–671 (Mi tvp2014)

This article is cited in 7 papers

Spatial branching populations with long individual lifetimes

A. Wakolbingera, V. A. Vatutinb

a Fachbereich Mathematik, J. W. Göthe Universität, Frankfurt am Main, Germany
b Steklov Mathematical Institute, Russian Academy of Sciences

Abstract: It is proved that for critical branching particle systems in $\mathbb{R}^{d}$ with symmetric $\alpha$-stable individual motion, $(1+\beta)$-stable branching, and individual lifetime distribution with a tail of exponent $\gamma \le 1$, the system initiated by a Poisson field of particles in $\\mathbb{R}^d$ dies out locally if $d < {\alpha \gamma }/\beta$, converges to a Poisson limit of full intensity if $d > {\alpha \gamma }/\beta $, and converges to a nontrivial limit along a subsequence as $d={ \alpha \gamma }/\beta $. Moreover, for a general nonarithmetic lifetime distribution with finite expectation, it is shown that, as $t\rightarrow \infty $, the system converges to a nontrivial limit of full intensity if $ d > \alpha /\beta $ and goes to local extinction otherwise.

Keywords: extinction, survival, persistence, stable distributions, regularly varying functions, renewal equations.

Received: 19.02.1998

DOI: 10.4213/tvp2014


 English version:
Theory of Probability and its Applications, 1999, 43:4, 620–632

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024