RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1971 Volume 16, Issue 2, Pages 229–248 (Mi tvp2144)

This article is cited in 47 papers

On the expected number of real zeros of random polynomials I. Coefficients with zero means

I. A. Ibragimov

Leningrad

Abstract: Let $\xi_j$, $j=0,1,\dots$, be independent identically distributed random variables with $\mathbf E\xi_j=0$ and belong to the domain of attraction of the normal law.
The main result is:
$$ \mathbf E\{N_n\mid Q_n(x)\not\equiv0\}\underset{n\to\infty}\sim\frac2\pi\ln n\quad\text{if }\mathbf P\{\xi_j\ne0\}>0 $$
where $Q_n(x)=\sum_{j=0}^n\xi_jx^j$, $N_n$ is the number of real roots of $Q_n$.

Received: 01.07.1969


 English version:
Theory of Probability and its Applications, 1971, 16:2, 228–248

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025