Abstract:
Local additive functional $\Xi$ is a random finite-additive measure whose value on the
parallelepiped $V\subset R^\nu$ belongs to the $\sigma$-algebra $\mathfrak B_V$ generated by the values of generalized Gaussian random field $\zeta=\{\zeta(\varphi),\varphi\in\mathfrak Y(R^\nu)\}$ on $V$. This functional are described in terms of their representation as multiple stochastic Wiener–Ito integrals.