RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1983 Volume 28, Issue 2, Pages 209–218 (Mi tvp2290)

This article is cited in 55 papers

On an inequality and on the related characterization of the normal distribution

A. A. Borovkov, S. A. Utev

Novosibirsk

Abstract: We obtain the conditions on the distribution of the random variable $\xi$ under which the inequality
$$ \mathbf Dg(\xi)\le c\mathbf E(g'(\xi))^2 $$
holds for any differentiable function $g$. Some properties of the functional
$$ U_\xi=\sup_g\frac{\mathbf Dg(\xi)}{\mathbf D\xi\mathbf E(g'(\xi))^2} $$
are investigated also. It is proved that $U_\xi\ge 1$ and that $U_\xi=1$ iff the random variable $\xi$ has the normal distribution. The theorem of continuity is true as well: if $U_{\xi_n}\to 1$ as $n\to\infty$, then the distributions of $\xi_n^{(1)}=(\xi_n-\mathbf E\xi_n)/\sqrt{D\xi_n}$ converge to the normal one.

Received: 09.03.1982


 English version:
Theory of Probability and its Applications, 1984, 28:2, 219–228

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024