Abstract:
Let $\xi(x)$ be a random function of $x\in R^k$ and
$$
\omega_p^r(\delta,\xi)=\sup_{\substack{x,h\in R^k\\|h|\le\delta}}
\mathbf E^{1/p}\biggl|\sum_{l=0}^r(-1)^lC_r^l\xi(x+lh)\biggr|^p.
$$
Properties of $\omega_p^r(\delta,\xi)$ as a function of $\delta$ are investigated; a number of inequalities are
obtained.