RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1983 Volume 28, Issue 2, Pages 420–429 (Mi tvp2309)

This article is cited in 2 papers

Short Communications

Convergence of Bernoulli series and the set of sums of a conditionally convergent functional series

S. A. Čobanjan

Tbilisi

Abstract: We survey a. s. convergence criteria for series $\sum a_k\varepsilon_k$ where $(\varepsilon_k)$ is a sequence of independent Bernoulli random variables, and $a1,a2,\dots$ are elements of a Banach space $X$. These criteria are applied to investigate the set $\mathfrak S_{(a_k)}$ of sums of a conditionally convergent series $\sum a_k$. The following problem is posed: does the a. s. convergence of $\sum a_k\varepsilon_k$ imply that $\mathfrak S_{(a_k)}$ is a shifted closed subspace of $X$. The answer is affirmative, if $X$ is of cotype $q$, $q<4$, and possesses the local unconditional structure.

Received: 09.12.1982


 English version:
Theory of Probability and its Applications, 1984, 28:2, 442–450

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024