RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1982 Volume 27, Issue 3, Pages 514–524 (Mi tvp2383)

This article is cited in 45 papers

On a density estimation within a class of entire functions

I. A. Ibragimova, R. Z. Has'minskiĭb

a Leningrad
b Moscow

Abstract: Let $X_1,\dots,X_n$ be i. i. d. random variables with values in $R^k$ and $p(x)$ be their density. Denote by $\Sigma(\mathbf K)$ the class of density functions such that their characteristic functions have symmetric compact support $\mathbf K$. For an arbitrary estimator $T_n(x)$ consider a function
$$ \Delta_n^2(T_n,p)=\mathbf E_p\|T_n-p\|_2^2, $$
where $\|\cdot\|_2$ is the $\mathscr L_2$-norm, $\mathbf E_p(\cdot)$ is the expectation with respect to the measure generated by $X_1,\dots,X_n$. We prove the equality
$$ \lim_{n\to\infty}[n\inf_{T_n}\sup_{p\in\Sigma(\mathbf K)}\Delta_n^2(T_n,p)]=\frac{\operatorname{mes}\mathbf K}{(2\pi)^k} $$
and some related results.

Received: 19.12.1980


 English version:
Theory of Probability and its Applications, 1983, 27:3, 551–562

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025