RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1982 Volume 27, Issue 4, Pages 805–810 (Mi tvp2439)

This article is cited in 63 papers

Short Communications

The estimate of the distribution of noise in autoregressive scheme

M. V. Boldin

Moscow

Abstract: Let $u_j=\beta_1u_{j-1}+\dots+\beta_qu_{j-q}+\varepsilon_j$ ($j=1,\dots,n$) аге $n$ observations of autoregressive scheme, where $\beta_1,\dots,\beta_q$ are unknown nonrandom parameters and $\varepsilon_j$ are independent identically distributed random variables with zero mean, finite variance and unknown distribution function $G(x)$. The estimate $\widehat G_n(x)$ of $G(x)$ is considered. It is proved that $\sqrt n[\widehat G_n(G^{-1}(t))-t]$ converges weakly to the Brownian bridge when $u\to\infty$. The result is used in the testing of the hypotheses on $G(x)$.

Received: 03.04.1981


 English version:
Theory of Probability and its Applications, 1983, 27:4, 866–871

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2025