RUS  ENG
Full version
JOURNALS // Teoriya Veroyatnostei i ee Primeneniya // Archive

Teor. Veroyatnost. i Primenen., 1981 Volume 26, Issue 1, Pages 59–72 (Mi tvp2454)

This article is cited in 4 papers

Cylindrical measures and $p$-summing operators

Ju. N. Vladimirskiĭ

Kostroma

Abstract: Let $(E,t)$ be a locally convex space. In terms of $p$-summing operators and tensor products we obtain sufficient conditions for the existence of a topology $\tau$ on $E$ such that the continuity of any linear operator $\Phi\colon(E,\tau)\to S(\Omega)$ is equivalent to $\mathscr E$-tightness (i. e. cylindrical concentration on the equicontinuous sets of $(E,t)'$) of corresponding cylindrical measure $X$ on $(E,t)'$.

Received: 10.02.1978


 English version:
Theory of Probability and its Applications, 1981, 26:1, 56–68

Bibliographic databases:


© Steklov Math. Inst. of RAS, 2024