This article is cited in
14 papers
On Conditional-Extremal Problems of the Quickest Detection of Nonpredictable Times of the Observable Brownian Motion
A. N. Shiryaev Steklov Mathematical Institute, Russian Academy of Sciences
Abstract:
We consider nonpredictable stopping times
$\theta=\inf\{t\le 1:B_t=\max_{0\le s\le 1}B_s\}$,
$g=\sup\{t\le 1:B_t=0\}$ for the Brownian motion
$B=(B_t)_{0\le t\le 1}$. The main results of the paper concern solving the following conditional-extremal problems: in classes of Markov times $\mathfrak{M}_\alpha^B(\theta)=\{\tau\le 1:
P\,\{\tau<\theta\}\le\alpha\}$, $\mathfrak{M}_\alpha^B(g)=\{\sigma\le 1:
P\,\{\sigma<g\}\le\alpha\}$, where
$0<\alpha<1$, to describe a structure of optimal stopping times
$\tau_\alpha^*(\theta)$ and
$\sigma_\alpha^*(g)$, for which $
E\,[\tau_\alpha^*(\theta)-\theta]^+=\inf_{\tau\in\mathfrak{M}_\alpha^B(\theta)}
E\,(\tau-\theta)^+$, $
E\,[\sigma_\alpha^*(g)-g]^+=\inf_{\sigma\in\mathfrak{M}_\alpha^B(g)}
E\,(\sigma-g)^+$. We also consider the problems of the structure of some special stopping times in the classes
$\mathfrak{M}_\alpha^B(\theta^\mu)$ and
$\mathfrak{M}_\alpha^B(g^\mu)$ for the case of Brownian motion with drift
$B^\mu=(B_t^\mu)_{0\le t\le 1}$, where
$B_t^\mu=\mu t+B_t$.
Keywords:
conditional-extremal problems, nonpredictable time, quickest detection, Brownian motion. Received: 23.07.2007
DOI:
10.4213/tvp2463