This article is cited in
9 papers
Moderate Deviations for a Diffusion-Type Process in a Random Environment
R. Sh. Liptsera,
P. Chiganskyb a Tel Aviv University
b Tel Aviv University, Department of Electrical Engineering-Systems
Abstract:
Let
$\sigma(u)$,
$u\in\mathbf{R}$, be an ergodic stationary Markov chain, taking a finite number of values
$a_1,\ldots,a_m$, and let
$b(u)=g(\sigma(u))$, where
$g$ is a bounded and measurable function. We consider the diffusion-type process
$$
dX^\varepsilon_t = b\biggl(\frac{X^\varepsilon_t}{\varepsilon}\biggr)\,dt+\varepsilon^\kappa\sigma\biggl(\frac{X^\varepsilon_t}{\varepsilon}\biggr)\,dB_t,\qquad t\le T,
$$
subject to
$X^\varepsilon_0=x_0$, where
$\varepsilon$ is a small positive parameter,
$B_t$ is a Brownian motion, independent of
$\sigma$, and
$\kappa>0$ is a fixed constant.
We show that for
$\kappa<\frac16$, the family
$\{X^\varepsilon_t\}_{\varepsilon\to 0}$ satisfies the large deviation principle (LDP) of Freidlin–Wentzell type with the constant drift
$\mathbf{b}$ and the diffusion
$\mathbf{a}$, given by
$$
\mathbf{b}=\sum_{i=1}^m\frac{g(a_i)}{a^2_i}\,\pi_i\Big/ \sum_{i=1}^m\frac{1}{a^2_i}\,\pi_i, \quad \mathbf{a}=1\Big/\sum_{i=1}^m\frac{1}{a^2_i}\,\pi_i,
$$
where
$\{\pi_1,\ldots,\pi_m\}$ is the invariant distribution of the chain
$\sigma(u)$.
Keywords:
random environment, moderate deviations, diffusion-type processes, Freidlin–Wentzell large deviation principle. Received: 17.03.2007
Revised: 12.10.2008
DOI:
10.4213/tvp2498